Big Ideas Math: Red Accelerated

Parent Newsletter

Key Terms

An inequality is a mathematical sentence that compares expressions. It contains the symbols $<,>, \leq$, or \geq.

A solution of an inequality is a value that makes the inequality true.

The set of all solutions of an inequality is called the solution set.

The graph of an inequality shows all the solutions of the inequality on a number line.

Students will..

Write and graph inequalities.
Use substitution to check whether a number is a solution of an inequality.

Solve inequalities using addition or subtraction.

Solve inequalities using multiplication or division.

Solve multi-step inequalities.
Solve real-life problems.

Standards

Common Core:

7.EE.4b: Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

GO Key Ideas

Addition Property of Inequality

- When you add the same number to each side of an inequality, the inequality remains true.
- If $a<b$, then $a+c<b+c$.
- If $a>b$, then $a+c>b+c$.

Subtraction Property of Inequality

- When you subtract the same number from each side of an inequality, the inequality remains true.
- If $a<b$, then $a-c<b-c$.
- If $a>b$, then $a-c>b-c$.

Multiplication and Division Properties of Inequality (Case 1)

- When you multiply or divide each side of an inequality by the same positive number, the inequality remains true.
- If $a<b$ and c is positive, then $a \cdot c<b \cdot c$ and $\frac{a}{c}<\frac{b}{c}$.
- If $a>b$ and c is positive, then $a \cdot c>b \cdot c$ and $\frac{a}{c}>\frac{b}{c}$.

Multiplication and Division Properties of Inequality (Case 2)

- When you multiply or divide each side of an inequality by the same negative number, the direction of the inequality symbol must be reversed for the inequality to remain true.
- If $a<b$ and c is negative, then $a \cdot c>b \cdot c$ and $\frac{a}{c}>\frac{b}{c}$.
- If $a>b$ and c is negative, then $a \cdot c<b \cdot c$ and $\frac{a}{c}<\frac{b}{c}$.
These properties are also true for \leq and \geq.

